Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 72(2): 1146-1161, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38181192

RESUMEN

Tocotrienols and tocopherols (vitamin E) are potent antioxidants that are synthesized in green plants. Unlike ubiquitous tocopherols, tocotrienols predominantly accumulate in the endosperm of monocot grains, catalyzed by homogentiate geranylgeranyl transferase (HGGT). Previously, we generated a tocotrienol-deficient hvhggt mutant with shrunken barley grains. However, the relationship between tocotrienols and grain development remains unclear. Here, we found that the hvhggt lines displayed hollow endosperms with defective transfer cells and reduced aleurone layers. The carbohydrate and starch contents of the hvhggt endosperm decreased by approximately 20 and 23%, respectively. Weighted gene coexpression network analyses identified a critical gene module containing HvHGGT, which was strongly associated with the hvhggt mutation and enriched with gene functions in starch and sucrose metabolism. Metabolome measurements revealed an elevated soluble sugar content in the hvhggt endosperm, which was significantly associated with the identified gene modules. The hvhggt endosperm had significantly higher NAD(H) and NADP(H) contents and lower levels of ADPGlc (regulated by redox balance) than the wild-type, consistent with the absence of tocotrienols. Interestingly, exogenous α-tocotrienol spraying on developing hvhggt spikes partially rescued starch accumulation and endosperm defects. Our study supports a potential novel function of tocotrienols in grain starch accumulation and endosperm development in monocot crops.


Asunto(s)
Hordeum , Tocotrienoles , Tocotrienoles/metabolismo , Endospermo/química , Almidón/metabolismo , Transcriptoma , Tocoferoles/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Metaboloma
2.
BMC Plant Biol ; 23(1): 528, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37904113

RESUMEN

BACKGROUND: Homogentisate phytyltransferase (HPT) is the critical enzyme for the biosynthesis of tocopherols (vitamin E), which are the major lipid-soluble antioxidants and help plants adapt to various stress conditions. HPT is generally strictly conserved in various plant genomes; however, a divergent lineage HPT2 was identified recently in some Triticeae species. The molecular function and transcriptional profiles of HPT2 remain to be characterized. RESULTS: In this study, we performed comprehensive transcriptome data mining of HPT1 and HPT2 in different tissues and stages of barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa), followed by qRT-PCR experiments on HPT1 and HPT2 in different tissues of barley and wheat. We found that the common HPT1 genes (HvHPT1, TaHPT1s, and AsHPT1s) displayed a conserved transcriptional pattern in the three target species and were universally transcribed in various tissues, with a notable preference in leaf. In contrast, HPT2 genes (HvHPT2, TaHPT2, and AsHPT2) were specifically transcribed in spike (developmentally up-regulated) and shoot apex tissues, displaying a divergent tissue-specific pattern. Cis-regulatory elements prediction in the promoter region identified common factors related to light-, plant hormone-, low temperature-, drought- and defense- responses in both HPT1s and HPT2s. We observed the transcriptional up-regulation of HvHPT1 and HvHPT2 under various stress conditions, supporting their conserved function in environmental adaption. We detected a clear, relaxed selection pressure in the HPT2 lineage, consistent with the predicted evolution pattern following gene duplication. Protein structural modelling and substrate docking analyses identified putative catalytic amino acid residues for HvHPT1 and HvHPT2, which are strictly conserved and consistent with their function in vitamin E biosynthesis. CONCLUSIONS: We confirmed the presence of two lineages of HPT in Triticeae and Aveninae, including hexaploid oat, and characterized their transcriptional profiles based on transcriptome and qRT-PCR data. HPT1s were ubiquitously transcribed in various tissues, whilst HPT2s were highly expressed in specific stages and tissue. The active transcription of HPT2s, together with its conserved cis-elements and protein structural features, support HPT2s' role in tocopherol production in Triticeae. This study is the first protein structural analysis on the membrane-bound plant HPTs and provides valuable insights into its catalytic mechanism.


Asunto(s)
Hordeum , Hordeum/genética , Hordeum/metabolismo , Triticum/genética , Triticum/metabolismo , Avena/metabolismo , Tocoferoles/metabolismo , Vitamina E/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
BMC Biol ; 21(1): 25, 2023 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747211

RESUMEN

BACKGROUND: Gene duplication is a prevalent phenomenon and a major driving force underlying genome evolution. The process leading to the fixation of gene duplicates following duplication is critical to understand how genome evolves but remains fragmentally understood. Most previous studies on gene retention are based on gene duplicate analyses in single reference genome. No population-based comparative gene retention analysis has been performed to date. RESULTS: Taking advantage of recently published genomic data in Triticeae, we dissected a divergent homogentisate phytyltransferase (HPT2) lineage caught in the middle stage of gene fixation following duplication. The presence/absence of HPT2 in barley (diploid), wild emmer (tetraploid), and bread wheat (hexaploid) pangenome lines appears to be associated with gene dosage constraint and environmental adaption. Based on these observations, we adopted a phylogeny-based orthology inference approach and performed comparative gene retention analyses across barley, wild emmer, and bread wheat. This led to the identification of 326 HPT2-pattern-like genes at whole genome scale, representing a pool of gene duplicates in the middle stage of gene fixation. Majority of these HPT2-pattern-like genes were identified as small-scale duplicates, such as dispersed, tandem, and proximal duplications. Natural selection analyses showed that HPT2-pattern-like genes have experienced relaxed selection pressure, which is generally accompanied with partial positive selection and transcriptional divergence. Functional enrichment analyses showed that HPT2-pattern-like genes are over-represented with molecular-binding and defense response functions, supporting the potential role of environmental adaption during gene retention. We also observed that gene duplicates from larger gene family are more likely to be lost, implying a gene dosage constraint effect. Further comparative gene retention analysis in barley and bread wheat pangenome lines revealed combined effects of species-specific selection and gene dosage constraint. CONCLUSIONS: Comparative gene retention analyses at the population level support gene dosage constraint, environmental adaption, and species-specific selection as three factors that may affect gene retention following gene duplication. Our findings shed light on the evolutionary process leading to the retention of newly formed gene duplicates and will greatly improve our understanding on genome evolution via duplication.


Asunto(s)
Duplicación de Gen , Hordeum , Triticum/genética , Hordeum/genética , Pan , Familia de Multigenes , Evolución Molecular , Filogenia
4.
Tree Physiol ; 43(4): 643-657, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-36579817

RESUMEN

Zearalenone (ZEN) is a secondary metabolite from Fusarium species. It is also present in plants and regulates the photochemical reaction in Photosystem II, the stress response and root growth. To investigate the mechanism by which ZEN regulates Tetrastigma hemsleyanum root growth, differentially expressed microRNAs (miRNAs) were identified and verified by high-throughput sequencing and Agrobacterium rhizogenes-mediated transformation of the roots of T. hemsleyanum seedlings treated with and without ZEN. The predicted functions of microRNA156b (miR156b) and microRNA156f (miR156f) were confirmed in transgenic hairy roots. (i) A total of 70 miRNAs showed significantly different expression levels under ZEN treatment, including seven highly conserved miRNAs. (ii) The number of lateral roots and total root length of the transgenic hairy roots overexpressing miR156b and miR156f was significantly higher than the wild-type hairy roots, and thus the overexpression of miR156b and miR156f in T. hemsleyanum promoted lateral root development. (iii) Bioinformatics analysis predicted that the target genes of miR156b and miR156f were SPL9/10. As compared with the wild-type hairy roots, the expression of SPL9 was significantly lower in the hairy roots overexpressing miR156b, and the expression of SPL10 was significantly lower in the hairy roots overexpressing miR156f. Therefore, SPL9 could be the target gene of miR156b, and SPL10 could be the target gene of miR156f. This study shows that ZEN could increase the expression of miR156b and miR156f in T. hemsleyanum roots, which negatively regulated the expression of their putative target genes SPL9 and SPL10, consequently promoting the growth and development of the lateral roots.


Asunto(s)
MicroARNs , Zearalenona , MicroARNs/genética , MicroARNs/metabolismo , Raíces de Plantas
5.
Front Microbiol ; 13: 1035167, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36406393

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) are well-acknowledged root endophytic bacteria used for plant growth promotion. However, which metabolites produced by PGPR could promote plant growth remains unclear. Additionally, which genes are responsible for plant growth-promoting traits is also not elucidated. Thus, as comprehensive understanding of the mechanism of endophyte in growth promotion is limited, this study aimed to determine the metabolites and genes involved in plant growth-promotion. We isolated an endophytic Rhizobium sp. WYJ-E13 strain from the roots of Curcuma wenyujin Y.H. Chen et C. Ling, a perennial herb and medicinal plant. The tissue culture experiment showed its plant growth-promoting ability. The bacterium colonization in the root was confirmed by scanning electron microscopy and paraffin sectioning. Furthermore, it was noted that the WYJ-E13 strain produced cytokinin, anthranilic acid, and L-phenylalanine by metabolome analysis. Whole-genome analysis of the strain showed that it consists of a circular chromosome of 4,350,227 bp with an overall GC content of 60.34%, of a 2,149,667 bp plasmid1 with 59.86% GC, and of a 406,180 bp plasmid2 with 58.05% GC. Genome annotation identified 4,349 putative protein-coding genes, 51 tRNAs, and 9 rRNAs. The CDSs number allocated to the Kyoto Encyclopedia of Genes and Genomes, Gene Ontology, and Clusters of Orthologous Genes databases were 2027, 3,175 and 3,849, respectively. Comparative genome analysis displayed that Rhizobium sp. WYJ-E13 possesses the collinear region among three species: Rhizobium acidisoli FH23, Rhizobium gallicum R602 and Rhizobium phaseoli R650. We recognized a total set of genes that are possibly related to plant growth promotion, including genes involved in nitrogen metabolism (nifU, gltA, gltB, gltD, glnA, glnD), hormone production (trp ABCDEFS), sulfur metabolism (cysD, cysE, cysK, cysN), phosphate metabolism (pstA, pstC, phoB, phoH, phoU), and root colonization. Collectively, these findings revealed the roles of WYJ-E13 strain in plant growth-promotion. To the best of our knowledge, this was the first study using whole-genome sequencing for Rhizobium sp. WYJ-E13 associated with C. wenyujin. WYJ-E13 strain has a high potential to be used as Curcuma biofertilizer for sustainable agriculture.

6.
Plant Cell Physiol ; 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35134996

RESUMEN

Autophagy is essential to maintain cellular homeostasis for normal cell growth and development. In selective autophagy, ATG8 plays a crucial role in cargo target recognition by binding to various adaptors and receptors with the ATG8-interacting motif, also known as the LC3-interacting region (LIR). However, the process of autophagy in the callus, as a proliferating cell type, is largely unknown. In this study, we overexpressed green fluorescent protein (GFP)-ATG8a and GFP-ATG8b transgenic barley callus and checked their autophagic activities. We identified five new ATG8 candidate interactors containing the canonical LIR motif by using immunoprecipitation coupled with mass spectrometry: RPP3, COPE, NCLN, RAE1, and CTSL. The binding activities between these candidate interactors and ATG8 were further demonstrated in the punctate structure. Notably, RPP3 was colocalized in ATG8-labeled autophagosomes under tunicamycin-induced ER stress. GST pull-down assays showed that the interaction between RPP3 and ATG8 could be prevented by mutating the LIRs region of RPP3 or the LIR docking site (LDS) of ATG8, suggesting that RPP3 directly interacted with ATG8 in an LIR-dependent manner via the LDS. Our findings would provide the basis for further investigations on novel receptors and functions of autophagy in plants, especially in the physiological state of cell de-differentiation.

7.
Genes (Basel) ; 12(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34828354

RESUMEN

GLOBOSA (GLO), a B-class MADS-box gene, is involved in floral organ determination but has rarely been studied in Osmanthus fragrans, which is a very popular ornamental tree species in China. Here, the full-length cDNA of a homologous GLO1 gene (named OfGLO1) was cloned from a flower bud of O. fragrans using the RACE technique. The OfGLO1 has a 645 bp open reading frame, encoding 214 amino acids. Similar to other PI/GLO proteins, OfGLO1 has two conserved domains, MADS MEF2-like and K-box, and a 16-amino-acid PI motif in the C terminal region. Our phylogeny analysis classified OfGLO1 as a PI-type member of the B-class MADS-box gene family. The qRT-PCR assay showed that the expression of OfGLO1 in O. fragrans was continuously upregulated from the tight bud stage to the full flowering stage but barely expressed in the pistils, sepals, and non-floral organs, such as root, leaf, and stem. The genetic effect of OfGLO1 was assayed by ectopic expression in tobacco plants. Compared with the wild-type, OfGLO1 transformants showed reduced plant size, earlier flowering, shorter stamens, and lower seed setting rates. Furthermore, some stamens were changed into petal-like structures. These findings indicate that OfGLO1 plays an important role in the regulation of flower development. This study improved our understanding of class B gene function in woody plants.


Asunto(s)
Clonación Molecular/métodos , Proteínas de Homeodominio/genética , Proteínas de Dominio MADS/genética , Nicotiana/genética , Oleaceae/genética , Proteínas de Plantas/genética , China , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Oleaceae/metabolismo , Sistemas de Lectura Abierta , Filogenia , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Nicotiana/crecimiento & desarrollo
8.
J Agric Food Chem ; 69(18): 5306-5317, 2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-33908247

RESUMEN

Barley has abundant anthocyanin-rich accessions, which renders it an ideal model to investigate the regulatory mechanism of anthocyanin biosynthesis. This study functionally characterized two transcription factors: Ant1 and Ant2. Sequence alignment showed that the coding sequences of Ant1 and Ant2 are conserved among 11 colored hulless barley and noncolored barley varieties. The expression profiles of Ant1 and Ant2 were divergent between species, and significantly higher expression was found in two colored Qingke accessions. The co-expression of Ant1 and Ant2 resulted in purple pigmentation in transient transformation systems via the promotion of the transcription of four structural genes. Ant1 interacted with Ant2, and overexpression of Ant1 activated the transcription of Ant2. Moreover, overexpression of Ant1 led to anthocyanin accumulation in the pericarp and aleurone layer of transgenic barley grains. Overall, our results suggest that anthocyanin-enriched barley grains can be produced by manipulating Ant1 expression.


Asunto(s)
Antocianinas , Hordeum , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Hordeum/metabolismo , Pigmentación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
BMC Plant Biol ; 21(1): 145, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33740900

RESUMEN

BACKGROUND: Barley is known to be recalcitrant to tissue culture, which hinders genetic transformation and its biotechnological application. To date, the ideal explant for transformation remains limited to immature embryos; the mechanism underlying embryonic callus formation is elusive. RESULTS: This study aimed to uncover the different transcription regulation pathways between calli formed from immature (IME) and mature (ME) embryos through transcriptome sequencing. We showed that incubation of embryos in an auxin-rich medium caused dramatic changes in gene expression profiles within 48 h. Overall, 9330 and 11,318 differentially expressed genes (DEGs) were found in the IME and ME systems, respectively. 3880 DEGs were found to be specific to IME_0h/IME_48h, and protein phosphorylation, regulation of transcription, and oxidative-reduction processes were the most common gene ontology categories of this group. Twenty-three IAA, fourteen ARF, eight SAUR, three YUC, and four PIN genes were found to be differentially expressed during callus formation. The effect of callus-inducing medium (CIM) on IAA genes was broader in the IME system than in the ME system, indicating that auxin response participates in regulating cell reprogramming during callus formation. BBM, LEC1, and PLT2 exhibited a significant increase in expression levels in the IME system but were not activated in the ME system. WUS showed a more substantial growth trend in the IME system than in the ME system, suggesting that these embryonic, shoot, and root meristem genes play crucial roles in determining the acquisition of competency. Moreover, epigenetic regulators, including SUVH3A, SUVH2A, and HDA19B/703, exhibited differential expression patterns between the two induction systems, indicating that epigenetic reprogramming might contribute to gene expression activation/suppression in this process. Furthermore, we examined the effect of ectopic expression of HvBBM and HvWUS on Agrobacterium-mediated barley transformation. The transformation efficiency in the group expressing the PLTPpro:HvBBM + Axig1pro:HvWUS construct was increased by three times that in the control (empty vector) because of enhanced plant regeneration capacity. CONCLUSIONS: We identified some regulatory factors that might contribute to the differential responses of the two explants to callus induction and provide a promising strategy to improve transformation efficiency in barley.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Hordeum/genética , Cámbium/genética , Cámbium/crecimiento & desarrollo , Metilación de ADN , ADN de Plantas/metabolismo , Perfilación de la Expresión Génica , Histonas/metabolismo , Hordeum/embriología , Ácidos Indolacéticos/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Semillas/genética , Semillas/crecimiento & desarrollo , Transcripción Genética
10.
Ann Bot ; 126(5): 929-942, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32575125

RESUMEN

BACKGROUND AND AIMS: Vitamin E (tocochromanol) is a lipid-soluble antioxidant and an essential nutrient for human health. Among cereal crops, barley (Hordeum vulgare) contains a high level of vitamin E, which includes both tocopherols and tocotrienols. Although the vitamin E biosynthetic pathway has been characterized in dicots, such as Arabidopsis, which only accumulate tocopherols, knowledge regarding vitamin E biosynthesis in monocots is limited because of the lack of functional mutants. This study aimed to obtain gene knockout mutants to elucidate the genetic control of vitamin E composition in barley. METHODS: Targeted knockout mutations of HvHPT and HvHGGT in barley were created with CRISPR/Cas9-enabled genome editing. High-performance liquid chromatography (HPLC) was performed to analyse the content of tocochromanol isomers in transgene-free homozygous Hvhpt and Hvhggt mutants. KEY RESULTS: Mutagenesis efficiency among T0 regenerated plantlets was 50-65 % as a result of two simultaneously expressed guide RNAs targeting each gene; most of the mutations were stably inherited by the next generation. The transgene-free homozygous mutants of Hvhpt and Hvhggt exhibited decreased grain size and weight, and the HvHGGT mutation led to a shrunken phenotype and significantly lower total starch content in grains. HPLC analysis revealed that targeted mutation of HvHPT significantly reduced the content of both tocopherols and tocotrienols, whereas mutations in HvHGGT completely blocked tocotrienol biosynthesis in barley grains. Transient overexpression of an HvHPT homologue in tobacco leaves significantly increased the production of γ- and δ-tocopherols, which may partly explain why targeted mutation of HvHPT in barley grains did not eliminate tocopherol production. CONCLUSIONS: Our results functionally validated that HvHGGT is the only committed gene for the production of tocotrienols, whereas HvHPT is partly responsible for tocopherol biosynthesis in barley.


Asunto(s)
Hordeum , Tocotrienoles , Sistemas CRISPR-Cas/genética , Edición Génica , Hordeum/genética , Humanos , Tocoferoles , Vitamina E
11.
Mol Med Rep ; 16(5): 7490-7496, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28944838

RESUMEN

Antioxidant of bamboo leaves (AOB) was certified to be a natural antioxidant by the Chinese Ministry of Health in 2003. However, the effects of AOB on animal reproductive and developmental functions remain unclear. The present study aimed to investigate the effects of different concentrations of AOB on mouse embryonic fibroblast (MEF) cells, and to examine the underlying molecular mechanism through which AOB affects the proliferation and apoptosis of MEFs. MEFs prepared from individual embryos were treated with various dosages of AOB. Cell viability and apoptosis were detected by MTT and flow cytometry assays, respectively. Reverse transcription­quantitative polymerase chain reaction and western blot analyses were used for the detection of mRNA and protein expression. Functional annotation of differentially­expressed genes was performed according to the Gene Ontology database and Kyoto Encyclopedia of Genes and Genomes pathway analysis. Compared with the control group, ~50% of MEF cells were inhibited following treatment with a 400 µg/ml concentration of AOB. Treatment with 400 µg/ml AOB for 72 h significantly increased the apoptotic rate of MEF cells compared with the control group. Following treatment with AOB, dehydrogenase/reductase 9, phospholipase A2 group IVE and platelet derived growth factor B were downregulated, while 17 other genes were upregulated in MEF cells. Treatment with AOB markedly increased the expression of phosphorylated extracellular signal­regulated kinase (ERK), ß­catenin, transcription factor SOX­17, calcium­binding tyrosine phosphorylation­regulated protein, and cholesterol side chain cleavage enzyme mitochondrial (P<0.01). Additionally, the ERK pathway inhibitor U0126 and Wnt pathway inhibitor dickkopf­related protein 1 markedly suppressed the expression of the above genes (P<0.01). AOB may impact the expression of proteins associated with embryonic fibroblast reproduction and embryonic development through activation of the ERK and Wnt signaling pathways, thus influencing cellular processes.


Asunto(s)
Antioxidantes/farmacología , Desarrollo Embrionario/efectos de los fármacos , Poaceae/metabolismo , Animales , Antioxidantes/aislamiento & purificación , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Análisis por Conglomerados , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Proteínas HMGB/metabolismo , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/metabolismo , Reproducción/efectos de los fármacos , Factores de Transcripción SOXF/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Vía de Señalización Wnt/efectos de los fármacos , beta Catenina/metabolismo
12.
Plant Physiol Biochem ; 118: 11-21, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28601019

RESUMEN

Increased endopolyploidy is important for plant growth and development as well as for adaptation to environmental stresses. However, little is known about the role of reduced endopolyploidy, especially in root systems. In this report, endopolyploidy variations were examined in different types of barley (Hordeum vulgare L.) roots, and the effects of phosphorus (P) deficiency and salinity (NaCl) stress on root endopolyploidy were also studied. The results showed that the endopolyploidy levels were lower in lateral roots than in either primary or nodal roots. The lower endopolyploidy in lateral roots was attributed to cortical cells. P deficiency reduced the endopolyploidy levels in lateral roots and mature zone of primary roots. By contrast, salinity had no effects on the endopolyploidy levels in either lateral or primary roots, but had a minor effect on nodal roots. Transcript analysis of cell cycle-related genes showed that multiple cell cycle-related genes were more highly expressed in lateral roots than in primary roots, suggesting their roles in lowering endopolyploidy. P deficiency reduced HvCCS52A1 transcripts in the mature zone of primary roots, but had little effect on the transcripts of 12 cell cycle-related genes in lateral roots, suggesting that endopolyploidy regulation differs between lateral roots and primary roots. Our results revealed that endopolyploidy reduction in root systems could be an integrated part of endopolyploidy plasticity in barley growth and development as well as in adaptation to a low P environment.


Asunto(s)
Hordeum/metabolismo , Fósforo/deficiencia , Raíces de Plantas/metabolismo , Ploidias , Salinidad
13.
Plant Physiol Biochem ; 115: 97-106, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28343064

RESUMEN

Autophagy is a highly conserved degradation pathway among eukaryote cells, which can recycle damaged or unwanted cell materials upon encountering stress conditions. As a key component of the Class III PI3K kinase complex, ATG6/Beclin-1 is essential for autophagosome formation. In this study, we isolated a putative HvATG6 gene in barley genome. The protein encoded by HvATG6 shares high sequence identity to ATG6 orthologs in rice and wheat, and has a typical autophagy-specific domain containing segments of repeated ß-sheet-α-helix. The expression of HvATG6 protein restored the appearance of autophagosomes in yeast atg6 mutant, indicating that HvATG6 complements the deficiency of yeast ATG6 protein in autophagy. Punctate florescence signals, considered as the PAS for autophagosome initiation, were observed in the cytoplasm of cells when HvATG6-GFP fusion construct was transformed into barley protoplast. Furthermore, the expression of HvATG6 was upregulated by various abiotic stresses including dark, H2O2 treatment, nitrogen deficiency, high salinity, drought, low temperature and toxic aluminum. Knockdown of HvATG6 in barley leaves through barley strip mosaic virus (BSMV)-induced gene silencing led to accelerated yellowing under dark and H2O2 treatments. Based on the above findings, we propose that barley ATG6 plays the similar role as other plant ATG6 orthologs, and might be involved in stress-induced autophagy process.


Asunto(s)
Beclina-1/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Hordeum/metabolismo , Estrés Fisiológico/fisiología , Secuencia de Aminoácidos , Autofagosomas , Beclina-1/genética , Silenciador del Gen , Hordeum/genética , Mutación , Hojas de la Planta , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana
14.
Plant Cell Physiol ; 58(3): 426-439, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28064248

RESUMEN

High-throughput small RNA sequencing has identified several potential aluminum (Al)-responsive microRNAs (miRNAs); however, their regulatory role remains unknown. Here, we identified two miR393 family members in barley, and confirmed two target genes-HvTIR1 and HvAFB-through a modified form of 5'-RACE (rapid amplification of cDNA ends) as well as degradome data analysis. Furthermore, we investigated the biological function of the miR393/target module in root development and its Al stress response. The investigation showed that miR393 affected root growth and adventitious root number by altering auxin sensitivity. Al3+ exposure suppressed miR393 expression in root apex, while overexpression of miR393 counteracted Al-induced inhibition of root elongation and alleviated reactive oxygen species (ROS)-induced cell death. Target mimic (MIM393)-mediated inhibition of miR393's activity enhanced root sensitivity to Al toxicity. We also confirmed that auxin enhanced Al-induced root growth inhibition in barley via application of exogenous 1-naphthaleneacetic acid (NAA), and the expression of auxin-responsive genes in the root apex was induced upon Al treatment. Overexpression of miR393 attenuated the effect of exogenous NAA on Al-induced root growth inhibition, and down-regulated the expression of auxin-responsive genes under Al stress, implying that miR393 regulates root sensitivity to Al through the alteration of auxin signaling output in barley. Therefore, these data indicate that miR393 acts as an integrator of environmental cues in auxin signaling, and suggest a new strategy to improve plant resistance to Al toxicity.


Asunto(s)
Aluminio/toxicidad , Hordeum/genética , Hordeum/metabolismo , Ácidos Indolacéticos/metabolismo , MicroARNs/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Hordeum/efectos de los fármacos , MicroARNs/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
15.
Rice (N Y) ; 9(1): 65, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27900724

RESUMEN

BACKGROUND: Vacuolar processing enzymes (VPEs) are cysteine proteinases that act as crucial mediators of programmed cell death (PCD) in plants. In rice, however, the role of VPEs in abiotic stress-induced PCD remains largely unknown. In this study, we generated OsVPE3 overexpression and suppression transgenic lines to elucidate the function of this gene in rice. RESULTS: Survival rate and chlorophyll retention analyses showed that suppression of OsVPE3 clearly enhanced salt stress tolerance in transgenic rice compared with wild type. Furthermore, fragmentation of genomic DNA was inhibited in plants with down-regulated OsVPE3. Vital staining studies indicated that vacuole rupture occurred prior to plasma membrane collapse during salt-induced PCD. Notably, overexpression of OsVPE3 promoted vacuole rupture, whereas suppression of OsVPE3 attenuated or delayed the disintegration of vacuolar membranes. Moreover, we found that suppression of OsVPE3 caused decreased leaf width and guard cell length in rice. CONCLUSIONS: Taken together, these results indicated that suppression of OsVPE3 enhances salt tolerance by attenuating vacuole rupture during PCD. Therefore, we concluded that OsVPE3 plays a crucial role in vacuole-mediated PCD and in stomatal development in rice.

16.
J Exp Bot ; 66(21): 6551-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26224880

RESUMEN

This paper outlines a numerical scheme for accurate, detailed, and high-throughput image analysis of plant roots. In contrast to existing root image analysis tools that focus on root system-average traits, a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process is presented. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits for each identified primary and lateral root. Thirdly, it associates lateral roots and their properties with the specific primary root from which the laterals emerge. The performance of this approach was evaluated through comparisons with other automated and semi-automated software solutions as well as against results based on manual measurements. The comparisons and subsequent application of the algorithm to an array of experimental data demonstrate that this method outperforms existing methods in terms of accuracy, robustness, and the ability to process root images under high-throughput conditions.


Asunto(s)
Procesamiento Automatizado de Datos/métodos , Hordeum/anatomía & histología , Procesamiento de Imagen Asistido por Computador/métodos , Raíces de Plantas/anatomía & histología , Triticum/anatomía & histología , Algoritmos , Programas Informáticos
17.
Plant Physiol Biochem ; 80: 168-75, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24787501

RESUMEN

Bcl-2 is one of the most important antiapoptotic members in mammals and prevents many forms of apoptosis in a variety of cell types. Our previous study revealed that overexpression of Bcl-2 significantly suppressed H2O2/NaCl-induced programmed cell death via inhibiting the transcriptional activation of OsVPE2 and OsVPE3 in transgenic rice. However, Ca(2+) and K(+) homeostasis of this process remains largely unknown. In the present study, we investigate whether nonselective cation channels (NSCC) blockers affect Bcl-2 function in rice under salt stress and how Bcl-2 affects ion homeostasis in salt stress-induced PCD. The results showed that overexpression of Bcl-2 significantly decreased transient elevations in the cytosolic Ca(2+) levels, inhibited NaCl-induced K(+) efflux but not H(+) efflux across the plasma membrane, and further suppressed the expression levels of OsVPE2 and OsVPE3, leading to the inhibition of salt-induced PCD and increase of tolerance to salt stress in transgenic rice. During the NaCl-induced PCD, the effects of a NSCC blocker La(3+) on ion homeostasis and VPEs expression in wild-type were similar to the effects of Bcl-2 overexpression in transgenic line. However, a synergistic effect of Bcl-2 and La(3+) was not obviously detectable. Our results suggested that Bcl-2 played an important role in suppression of NaCl-induced PCD by disruption of ion homeostasis, providing an insight into the mechanistic study of plant VPEs, cytosolic Ca(2+) level and K(+) efflux.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Oryza/metabolismo , Potasio/metabolismo , Cloruro de Sodio/farmacología , Apoptosis/efectos de los fármacos , Citosol/efectos de los fármacos , Proteínas Proto-Oncogénicas c-bcl-2
18.
New Phytol ; 196(1): 149-161, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22846038

RESUMEN

• MicroRNA (miRNA)-mediated regulation of auxin signaling components plays a critical role in plant development. miRNA expression and functional diversity contribute to the complexity of regulatory networks of miRNA/target modules. • This study functionally characterizes two members of the rice (Oryza sativa) miR393 family and their target genes, OsTIR1 and OsAFB2 (AUXIN SIGNALING F-BOX), the two closest homologs of Arabidopsis TRANSPORT INHIBITOR RESPONSE 1 (TIR1). • We found that the miR393 family members possess distinctive expression patterns, with miR393a expressed mainly in the crown and lateral root primordia, as well as the coleoptile tip, and miR393b expressed in the shoot apical meristem. Transgenic plants overexpressing miR393a/b displayed a severe phenotype with hallmarks of altered auxin signaling, mainly including enlarged flag leaf inclination and altered primary and crown root growth. Furthermore, OsAFB2- and OsTIR1-suppressed lines exhibited increased inclination of flag leaves at the booting stage, resembling miR393-overexpressing plants. Moreover, yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsTIR1 and OsAFB2 interact with OsIAA1. • Expression diversification of miRNA393 implies the potential role of miRNA regulation during species evolution. The conserved mechanisms of the miR393/target module indicate the fundamental importance of the miR393-mediated regulation of auxin signal transduction in rice.


Asunto(s)
MicroARNs/genética , Oryza/crecimiento & desarrollo , Oryza/genética , Hojas de la Planta/anatomía & histología , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Ácido 2,4-Diclorofenoxiacético/toxicidad , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Genes de Plantas/genética , Resistencia a los Herbicidas/genética , MicroARNs/metabolismo , Oryza/anatomía & histología , Oryza/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo
19.
FEBS J ; 278(24): 4797-810, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21972902

RESUMEN

Hydrogen peroxide (H(2)O(2)) is known to be a key player in apoptosis in animals. The components and pathways regulating H(2)O(2)-induced programmed cell death in plants, however, remain largely unknown. In the present study, rice transgenic lines overexpressing Bcl-2, a human apoptotic suppressor, were obtained. These transgenic lines showed increased tolerance to high levels of H(2)O(2), resulting in increased seed germination rates, root elongation, root tip cell viability and chlorophyll retention compared to control lines. In the control lines, treatment with H(2)O(2) resulted in DNA laddering and a clear terminal transferase dUTP nick end labeling signal, which are the hallmarks of programmed cell death. However, this effect was not detected in the Bcl-2-overexpressing transgenic lines. Further investigations indicated that Bcl-2 suppressed H(2)O(2)-induced programmed cell death but did not inhibit stress-elicited reactive oxygen species production in rice. RT-PCR revealed that the expression of the two vacuolar processing enzyme genes (i.e. OsVPE2 and OsVPE3) was dramatically induced by H(2)O(2) in the wild-type line but not in the Bcl-2-overexpressing line. Moreover, treatment with H(2)O(2) resulted in the disruption of the vacuolar membrane in the wild-type line. The expression levels of OsVPE1 and OsVPE4 did not significantly differ between the wild-type line and the transgenic line that was treated or untreated with H(2)O(2). The similar roles of Bcl-2 and OsVPEs during endogenous reactive oxygen species-triggered programmed cell death were also confirmed by NaCl stress in rice. To our knowledge, the present study is the first to demonsatrate that Bcl-2 overexpression inhibits H(2)O(2)-induced programmed cell death and enhances H(2)O(2) tolerance. We propose that Bcl-2 overexpression in rice suppresses the transcriptional activation of OsVPE2 and OsVPE3, but not of OsVPE1 or OsVPE4.


Asunto(s)
Apoptosis/efectos de los fármacos , Cisteína Endopeptidasas/fisiología , Peróxido de Hidrógeno/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Secuencia de Aminoácidos , Supervivencia Celular/efectos de los fármacos , Cisteína Endopeptidasas/genética , Humanos , Datos de Secuencia Molecular , Oryza/genética , Plantas Modificadas Genéticamente/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Especies Reactivas de Oxígeno/metabolismo , Alineación de Secuencia , Activación Transcripcional/efectos de los fármacos , Vacuolas/efectos de los fármacos , Vacuolas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...